Detection of Abnormal Input-Output Associations
نویسندگان
چکیده
We study a novel outlier detection problem that aims to identify abnormal input-output associations in data, whose instances consist of multi-dimensional input (context) and output (responses) pairs. We present our approach that works by analyzing data in the conditional (input–output) relation space, captured by a decomposable probabilistic model. Experimental results demonstrate the ability of our approach in identifying multivariate conditional outliers.
منابع مشابه
Detecting Unusual Input-Output Associations in Multivariate Conditional Data
Despite tremendous progress in outlier detection research in recent years, the majority of existing methods are designed only to detect unconditional outliers that correspond to unusual data patterns expressed in the joint space of all data attributes. Such methods are not applicable when we seek to detect conditional outliers that reflect unusual responses associated with a given context or co...
متن کاملA Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملA Hybrid Model of Heart Anomalies Detection by Processing Heart Sounds
Introduction: Different factors are effective in detecting heart abnormalities. The greater the number of these factors, the greater the uncertainty in the detection of heart abnormalities. In the uncertainty condition in response of prediction model, the fuzzy systems are one of the most effective methods for generating an acceptable response. Method: In this applied study, 3240 records rela...
متن کاملA Hybrid Model of Heart Anomalies Detection by Processing Heart Sounds
Introduction: Different factors are effective in detecting heart abnormalities. The greater the number of these factors, the greater the uncertainty in the detection of heart abnormalities. In the uncertainty condition in response of prediction model, the fuzzy systems are one of the most effective methods for generating an acceptable response. Method: In this applied study, 3240 records rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.01035 شماره
صفحات -
تاریخ انتشار 2017